
AD-A092 317 CALIFORNIA UNIV SAN DIEGO LA JIOLLA DEPT OF CHEMISTRY F/6 7/4
MOLECULAR DYNAMICS AND SPECTRA: I- DIATOMIC ROTATION AND VISRAT--KTC(U)
NOV 80 K R WILSON, P H BERENS N00OI7-C-0325

UNCLASSIFIED TR-2 NL

ENCELhhShhE



1111 .0 1 28 125

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURtAU Of S AN[ARD , I Qt, A

11"11 I~ *



* SECUItrY CLASSIFICATION Or THIS PAGE (whenl 0... Entered)

REPOR DOCMENTTIONPAGEREAD INSTgUCTIONI
REPOR DOCMENTTIONPAGEBEFORE COMPLETLNG FORM

IM.N GOVr ACCESICN No. 3. RIGIP1EMTS1 CATALOG NUM6ER

4TITLE (and Sste) L TYPE OFREPORT &PEIODOCOVERtED

LECULAR DJYNAMICS AND PECTRA: I. DIATOMIC tehncl pirt.
-ATION XND41BRATIONI, p9MOR..MG 11904TNME

J . Kent R.J Wilson
^1 Peter H. /Berens i( vo ORWPA 78C02

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Chemistry AE OI NTNME~

University of California, San Diego j
La Jolla, CA 92093 .. ~

Z4  
11. CONTROLLING OFFICE NAME AND ADDRESS 2 OTOT

Office of Naval Research '- oen~p9
.1 Arlington, VA 22217 1 13i. MUMBER Of PAGES

22
14. MONITORING AGENCY NAME A AOOR it I. otha Ifie) 1S. SECURITY CLASS. (01 this topeew)

Unclassified
IS*. DECLASSIFICATION/OOWNGWADING

t ME__V_ ,SCH EDULE

14. DISTRIBUTION STATEMENT (ol this Report)

This document has been approved for public release and sale; its

distribution is unlimited. O t
ELECT

17. DISTRIBUTION STATEMENT (of the abstract entered in Black" 30.11dif seen boo Reot DE 2g

IS. IKY WORDS (Continue.on reverse side it necosemy a"d identify by block Mmber)

molecular dynamics vibrational spectra
diatomic rotation computer simulation
diatomic vibration

20. ABSTRACT (Continue an reverse side ii nlecessary and identify by block nrbor)
-4The pure rotational and vibrational -rotational absorption bands for a

LJdiatomic are calculated directly from classical molecular dynamics, classicalI-miJ linear response theory and classical statistical mechanical ensemble averaging
LA.. with the use of simple quantum corrections. The experimental spectral band in-

tensities and contours are well reproduced for CO from dilute gas phase through
solution in compressed Ar to solution in liquid Ar by these "Newtonian" classi-
cal spectral calculations. The typical evolution seen in vibrational spectra

-from multiple-peaked gas phase bands to single-peaked solution bands is observed. -L

DD IFlO17 1473 EDITION OF I NOVS IS 1 OBSOLETE . -I
* S/N 0102.LF.O,4.Geoi _____________________

SECURITY CLASSIFICATION or TI4Is PAGE (wen onto sateredi

OVER



Block 20 (continued)

The "Newtonian" gas phase calculations also match quantum and correspondence
principle classical spectral calculations. This molecular dynamic approach may
be applied to compute the spectra of complex molecules or of liquids for which
a normal mode analysis may be impractical, and may also be extended to non-
equilibrium systems, for example to compute transient vibrational spectra during
chemical reactions.

.

\~c ~.Ot~!



OFFICE OF NAVAL RESEARCH

Contract N00014-78 C-032S

TECIUXCAL REPORT NO. 2

MOLECULAR DYNAMICS AND SPECTRA:

I. DIATOMIC ROTATION AND VIBRATION

by

Peter H. Berens and Kent R. Wilson

Submitted for Publication

to

The Journal of Chemical Physics

University of California, San Diego

Department of Chemistry

La Jolla, CA 92093

October 31, 1980

Reproduction in whole or in part is permitted for any purpose

of the United States Government

Approved for Public Release; Distribution Unlimited



MOLECULAR DYNAMICS AND SPECTRA: I. DIATOMIC
ROTATION AND VIBRATION

Peter H. Berens and Kent R. Wilson

Department of Chemistry
University of California, San Diego

La Jolla, California 92093

I. INTRODUCTION
Since one can quite easily and accurately compute the rotational and vibrational-rotational

absorption spectra of diatomic molecules directly from quantum mechanics, it would at first
glance seem useless, even quixotic, to try to approximate these spectra by means of a much
more laborious classical technique. The justification for such an exercise is that this classical
approach may be extended to systems in which a quantum approach is as yet impractical. For
example, one may compute the infrared spectra for systems involving many atoms, such as
large molecules, clusters or liquids, in which a normal mode analysis may not be feasible.1 In
addition, one can extend the approach to explicitly time dependent problems such as the com-
putation of the transient vibrational spectrp one might hope to measure during the course of a
chemical reaction. 1-3 It is thus useful to test this approach with a simple molecular system for
which the results can be rigorously tested both against accurate quantum calculations and
against experimental measurements.

In Fig. 1 we see the rotational and fundamental vibrational-rotational absorption bands of
CO which we will use for our test of the ability of classical mechanics to reproduce quantum
reality in the form of rotational and vibrational spectra. The shapes of vibrational spectra are a
sensitive reflection of both inter- and intra-molecular motion4 and can thus in principle supply a
method for discovering the microscopic trajectories responsible for chemical processes in solu-
tion.

II. THEORETICAL TECHNIQUES
The theoretical approach consists of five steps.1 First, classical mechanics is used to com-

pute the atomic trajectories for the system of interest from a set of initial atomic coordinates
and momenta and a given potential surface. Second, a time-varying dipole moment vector (for
infrared spectra) or a time-varying polarizability matrix (for Raman spectra) for the entire sys-
tem is calculated from the trajectories. Third, linear response theory4-6 is used to derive an
infrared (or Raman) spectrum "specific" to the chosen initial coordinates and momenta from
the power spectrum of the dipole moment (or polarizability) time histories. Fourth, the
"specific spectra are averaged over the ensemble of initial coordinates and momenta which is
appropriate to the experimental conditions of interest (e.g. a particular temperature and pres-
sure). Fifth, quantum corrections are applied where necessary to converge toward quantum
reality.

By these five steps, surprisingly accurate infrared and Raman spectra may be derived from
three functions of atomic coordinates: potential energy, dipole moment vector and polarizabil-
ity matrix. We will illustrate here the electric dipole (microwave and infrared absorption and
emission) case, and leave the details of Raman scattering for another paper.

L II 1
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A. Molecular Dynamics and Classical Trajectories

Our first step is to choose a set or initial coordinates and momenta for the collection of N
atoms from an ensemble of possibilities representative of the system of interest, for example a
system at a particular pressure and temperature. We make this choice purely classically
although Marcus and co-workers have shown 7 how one might also make such choices semiclas-

sically. The second step is to compute the classical trajectories r,() ... . rN(t) describing the
atomic motions by integrating Newton's Second Law

8 V d21i
--- ' F- (1) V

in which V - V(r . rv) is the potential energy of the atoms at positions
rl .... rN, Fi - Fi(rl ... rv) is the force on the ith atom, and in, is the mas of the ith
atom. A modified Verlet integration algorithm is used.8 , 9 For the example shown below of a
CO solution in Ar, minimum image periodic boundary conditions with truncated octahedral
boundaries o are used to reduce edge effects.

B. Time History of Dipole Moment

Given the function j.(rl. . , r,), which describes the dipole moment of the system as a
function of the atomic positions, we can use the trajectories of the atoms, r(t) .... rN(^W, to
compute I.(t), the dipole moment of the system as a function of time.

C. Linear Response and Specific Spectra

For a system at equilibrium, ive can use linear response theory" to compute the infrared
spectrum a(w) from the dipole moment time history, L(t). We can thus relate the spectrum
of the fluctuations which /(t) naturally undergoes at equilibrium to the spectrum with which
j.(t) responds when driven by an external oscillating electric field, i.e. we relate the equilibrium
dipole moment fluctuation spectrum to the absorption spectrum when irradiated with light.

The appropriate linear response equations are4, 6

a& )- 47'2w[l-exp(-ftrI&)] l(c) (2)
37Ycn

I(o) - (21r)-'f dt exp(-iwt) <.u(0)-it(t)> (3)

in which a(o) is the absorption cross section as a function of angular frequency W,
(kT) -I in which k8 is Boltzmann's constant and T the temperature, 11 = h/27. in which h is
Planck's constant, c is the speed of light, n is the index of refraction of the medium, IAj) is
defined as the absorption lineshape and is evaluated for an isotropic medium, and
<#(0).I.(t) > is the ensemble average of the dipole moment time correlation function.

As Parseval's theorem i l and the Wiener-Khintchine theorem 6.12 show, I(o) may be
computed in the mathematically equivalent form of the power spectrum 7

'I Ifdt exp(-it)j(t))
I~o)= ( - Zj-rdy,: -T

allowing the use of fast Fourier techniques. Considerable care must be used to properly apply
spectral estimation theory, windowing and windowing corrections, 1 . 13 in both the correlation
and power spectra methods to avoid distorting the spectra as a result of the use of finite time
histories. Particular care must be taken if band wings are to bc correct or if small bands are to
be seen in the presence of large ones. We use a four term -74 db Blacknian-llarris window t -

which allows the correction to be applied as a simple frequency-spatcc convolution of the
Fourier transform of the dipole moment time histories with the Fourier transform of the.win.
dow function. This is done before computing the power spectrum. The windowed power
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spectrum is multiplied by the inverse or the sum or the squares of the windowing function
which, by Parseval's theorem, 1 1 can be evaluated either in time (windowing function) or fre-
quency (Fourier transform of windowing function). This simple scaling factor corrects the
spectral band areas for the scaling effect of the windowing and is correct because of the loss of
phase coherence due to the ensemble averaging. The windowing and the area scaling correction
can be combined into a convolution of the Fourier transform of the dipole moment time his-
tory with the discrete function fj -(-0.00170, 0.08725, -0.46174, 0.74724, -0.46174,
0.08725, -0.00170) for k =- -3.... .0 ... .+3 before taking the square of the absolute value
in computing the power spectrum.

D. Ensemble Averaging

The specific spectrum computed from a single time history is the spectrum of a particular
very small sample for a particular very short time period. To compare to an experimental spec-
trum, an ensemble average must be made over a distribution of specific spectra corresponding
to the experimental conditions. For example, to compare with a spectrum taken at temperature
T one can choose a reasonable initial guess for the positions r, (0). .. . ,rv(O) of the atoms,
and choose the velocities i(0), .... i,.(0) randomly from a Maxwell-Boltzmann distribution
for temperature T. After computing the trajectories ri(i), . .. . rW(t) forward in time for a
suitable period to equilibrate the system (in particular to equilibrate potential and kinetic ener-
gies) one can preserve positions but change to a new set of velocities, again chosen randomly
from the Maxwell-Boltzmann distribution, and then continue integrating forward in time.
(Such velocity randomizatibn is important to achieve a proper ensemble average for low density
gas phase molecules for which energy and angular momentum are otherwise conserved over
long periods.) Several repetitions of this process will result in a system equilibrated at the
desired temperature T and randomly chosen as to velocity. The positions of the atoms may
still, however, be correlated with the initial guessed positions. To sample more of configuration
space we therefore use the final positions of each run as the initial guess for the next run and
again repetitively randomize velocities. An alternative method would be to use the semiclassi-
cal techniques of Marcus and co-workers 7 and quantize the action variables and then perform
the ensemble average over a Boltzmann population of these quantized systems.

The spectra which are derived from classical molecular dynamics, classical linear response
theory, and classical statistical mechanical ensemble averaging we will call "Newtonian." They
are straightforward to calculate in principle, but can be unusually demanding arithmetically.
Thus for their computation we use what might be called an "instrument for theory," a network
of processors (including an array processor) and generalized program package, which are
described elsewhere. 1.2

E. Quantum Corrections

In order to discover what corrections are necessary to bring our classical calculations into
agreement with quantum reality, we will compare three different ways of computing the absorp-
tion spectrum: i) quantum mechanics without linear response theory, ii) correspondence princi-
ple classical mechanics without linear response theory as given by the limit of quantum
mechanics as Planck's cqnstant approaches zero, and iii) ordinary Newtonian classical mechan-
ics with classical linear response theory and ensemble averaging from classical statistical
mechanics.
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1. Quantum solution
Quantum mechanically, we can evaluate the absorption spectrum, a(w), from I(w) as

shown in Eq. (2), without recourse to linear response theory as, 4 6

in which we have averaged over an isotropic distribution of molecular orientations. In the
above, i is an initial quantum state, f a final state, p, - exp(-3E,)/Zexp(-P3E,) is the proba-

I

bility for initial state i, <fIjj i> is the electric dipole transition matrix element between states
i and f, O,, - (E. - E,)/7, E, and E, are the energies of the final and initial states, respec-
tively, and 8 is the Dirac delta function. In the Appendix, we give the evaluation of this
expression explicitly for the case of the isolated diatomic molecule and thus arrive at a quantum
mechanical computation of the rotational and vibrational-rotational spectrum a (w), by inserting
the resulting I(o) into Eq. (2).

2. Correspondence principle classical solution
We can solve problems in classical mechanics in either of two very different ways. We

can take the usual route of Newton's laws, or, as in this section, we can solve the problem
quantum mechanically, but take the correspondence principle limit as 7-0. Both forms of
classical mechanics are useful in bringing different viewpoints to bear on understanding the
problem, and in providing checks of theoretical and computational methods. The correspon-
dence principle approach, i.e. the limit of infinitesimal photons causing infinitesimal perturba-
tions of the molecular system, gives for the classical 7-0 limit of Eq. (2)

a( 4-r- (o1 ) (6)
3cn

which we use with our classical molecular dynamics calculations.

However, in the correspondence principle calculations illustrated in the figures, we have
taken the h-0, limit by iterating each calculation of a(w) using successively lower values of 7i
in Eqs. (A7-A9) of the Appendix and in Eq. (2) until the computed a(w) converges, which
occurs by the time 7 has been replaced by -0.017.

3. Evaluation of quantum corrections
Simple quantum corrections are used to bring the classically computed spectra into agree-

ment with theoretical and experimental quantum reality. The correction to the rotational band
contour will be seen to be minor and usually negligible. The vibrational-rotational contour
correction, while not negligible, is relatively small and easy to apply, consisting of a frequency
shift and a shape correction.

We write Eq. (2) as

, 4ir 2w1l-exp(-P"w)] IO(a) (7)
37 cn(

in which the superscript Q indicates quantum. If we substitute -o for W, interchange the sub-
scripts land f in Eq. (5), and recognize that I<f 1 ,Ii>12 - I<iIgAIf> and 8(w) -8(-W),
we then find that

/Q(_a). - p1 I<fp1iII>12 8(.j,-c). (8)

For a system at equilibrium, p, - exp(P"7w,,)pj, and thus

Io(w) - exp(fi /w,) - exp(37w) (9)
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which is just an expression of detailed balance. Because of the 8-functions in Eqs. (5) and (8),
w can replace =w/,. The correspondence principle classical limit is thus

IC°)- liranO---- - l (10)
i , - IQ(-)

in which the superscript C indicates classical. Eqs. (9) and (10) can be understood as follows.
The energy carried by a photon of angular frequency (a connects states in a quantum system
which are 11w apart and of appreciably different Boltzmann probabilities in an equilibrium sys-
tem, and thus the 1() for absorption and IQ(-cu) for emission are related by the detailed bal-
ance factor exp(/3ok). In -the classical correspondence limit as 7-0, the photon connects
states of only infinitesimally different energy thus ic(cv) for absorption and /(c(-,)for emission
become equal. Comparison of Eqs. (9) and (10) suggests that one should consider the quan-
tum correction5, 14.15

P( . exp(,plw,/2) (11)

which symmetrically and simply fulfills the requirements of both equations. The factor of w/2
inside the exponential in Eq. (11) arises because I/(-w) and I(cv), which are related by
detailed balance, lie 2w apart in angular frequency.

a. Rotational correction. The classical absorption cross section ac() is, from Eq. (7),

ac(w) lim aO(v) 4r1w im [1-exp(-/f'r)] 1 r Qt1 (12)
--o 3cn i --.o ili i"~"J

- 41 2 w ), (13)

3cn

in which we define the correspondence principle, 7r--0, classical limit of I(wJ) as 1C(w).

Using Eqs. (7), (11) and 03) we have,

ag() - sinh(Priw/2) (14)
ac(W) / /2

which can be used as a quantum correction to ac(w), the classical pure rotational band contour.
Since for small x, sinh(x) = x, the quantum correction is approximately unity for low frequen-
cies and high temperatures, and is only 1.0096 at 100 cm - ' and 300K. Thus, in general its
effect on the rotational spectrum is small and the quantum and classical pure rotational band
contours are essentially the same.

b. Vibrational-rotational correction. To derive quantum corrections for the vibrational-
rotational spectra, we first make the approximation of separating vibration and rotation (a
separation not made in our molecular dynamics which can mix and couple translational, rota-
tional and vibrational motions), giving for the matrix element in Eq. (5), as shown in Eq. (A4)
of the Appendix,

<fiJ,'i> - <VJ'M'p vJM> (15)
<V'l (R)lV> <J'g'JflJg> (16)

in which/z(R) is the magnitude of the dipole moment and A is a unit vector along the internu-
clear axis. We also drop, for example in Eq. (Al 1), the coupling terms between vibration and
rotation in the energy which gives

ii.,j - E(v'J') - E(v,J)

IE(W) - E()] + [E() - E(J)J - 7kw,., + lftWJ (17)

where w,, and wjj are angular frequency differences between states v' and w, and J' and J
respectively. Substituting Eqs. (16) and (17) into Eq. (5) we bet
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lO~w - .p(V) pl(J) jIjjAl(R)jV> <JM'I jJM>j 2

I I' ,, M JM"

X ( + wjs - ',,), (18)

in which, for a system at equilibrium,

- exp[-pE(Y)] (19)lv-Yexpt-PEW)l

andI and .expl-OE(J)

P(J) -Lexpl-P3E(J)l (20)

J

Separtation of the sums over the vibrational and rotational states gives

IQo D -fZp(V) I<VIt(,R)IV>I 2  ZJ Z p,(J) k<JIMIJA1>I21

x 8((0,', + Ws ' - Ws) • (21)

We can write this in terms of a convolution 16

IQ(W) p, (y) I < V'p(,R) I V>12 ( W )~

Ip,(J) I<jM'I*IjAIj~>j2 (CjyoW)l (22)

. IYAW) 4Oo), (23)

in which the quantum absorption lineshape l(w) is seen to be a convolution of the quantum
vibrational absorption lineshape I() and the quantum rotational absorption lineshape Iek(os),
if vibration and rotation are separable by Eqs. (16) and (17). Therefore, in this approximation
of separation of vibration and rotation, we can quantum correct the vibrational and rotational
lineshapes IF(.) and I(wO) separately and then convolve the results.

Similarly, when vibration and rotation are separable by Eqs. (16) and (17), by applying
the frequency convolution theorem i l to Eq. (23), we can separate the dipole moment time
correlation function 4. 6 into a product of vibrational and rotational correlation functions 17

< (O)-L(t)> fd exp(iowt) IQ() f do exp(iwot)[IO(-) * O)] (24)

- I±dt exp(iwi) IQ(w)JI dw exp(iwf)IQ(W)I (25)

- < s(O)j(I) > <*(o).A(:) >. (26)

Substituting Eq. (23) into Eq. (7), the quantum vibrational-rotational absorption cross
section, i.e. spectrum, is

AO ) 41 2w[l-exp(-P17w' ) ( (27)

and the classical spectrum is
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c -.(w) lm rA"w) I --olim .-exp(-Orfw)lrim IQ() *rim IMQ,() (28)

-4'r2w2/3 1'O*IC(](9
- 3cn I 4()*IkaJ.(9

A comparison of Eqs. (27) and (29) shows that given the classical vibrational-rotational
spectrum, cic(w), and assuming separability of vibration and rotation, we can quantum correct
it to approximate the quantum band contour by the following three steps.

i) Initial factor. The ratio of the quantum and classical versions of the first factor in
brackets in Eqs. (27) and (29) is

41-zw .[l-exp(-7Tc)]
3cn 4w - 1-exp(-M37w) (30)

3cn
and we multiply the classical spectrum by this factor.

ii) Vibrational lineshape. From Eqs. (22) and (23), we have

-- 7Ip,(V) I<v'l (R)Iv>j1 8(w,,. - w,). (31)
V V

If we evaluate IQ(ow), the vibrational absorption lineshape function, using the linear dipole
function approximation, 1.(R) = I.O + 1.IAR, for an equilibrium system of harmor:c oscillators
(see Appendix) we findiS

1VO~~wti2 S(Waw) (2
, 2m,[l-exp(-j37Tw)J (32)

in which in, is the reduced mass of the oscillator, w,,-(k/m,)' - and k is the force constant.
Taking the correspondence principle limit of Eq. (32) yields

IF(w) - lim I0(o) - (2m,3o-) - i JA? 8(Wo,-CV) , (33)

giving a quantum correction factor from Eqs. (32) and (33) of
" I-exp(-"w) (34)

This harmonic oscillator quantum correction factor exactly cancels out the quantum correction
in Eq. (30) above. Therefore, for a harmonic oscillator with linear dipole moment function,
there is no quantum correction and the quantum and classical spectra agree for pure vibration.
The quantum corrections to vibration are thus due to anharmonicity in the potential and non-
linearity in the dipole moment function. We will discuss only the potential anharmonicity here.

For the fundamental absorption band, the sum of all v+l-v transitions, the dominant
effect of potential anharmonicity for pure vibration is a shift in the band center to a lower fre-
quency. That such a quantum correction is needed can be seen qualitatively as follows. For a
usual high frequency vibration at room temperature, the classical oscillator is at -k' 7, near the
bottom of the well in a largely harmonic region, while the quantum oscillator is transitioning
largely from the zero point v=O to v-I levels (both at several kYT) thus feeling much more of
the anharmonicity.

A simple correction suffices for the .lv-l fundamental transition treated here. We need
only shift the whole band as calculated classically over to its proper quantum location, without
needing to alter its shape. This can be done by computing the shift of the rotationless oscillator,
involving the fictitious (".J) transitions (v+l,0)-(vO). We can derive this pure vibrational
spectrum from Eq. (A8) in the Appendix as
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IO a) - . p(vO) 4 [(Y+I)/2] 4 E(v8 lO) (35)

We evaluate the center in angular frequency of a (w) for the vibrational band as computed from
Eqs. (2) and (35), first for the quantum case and then for the classical case by reducing
Planck's constant until convergence is reached. This offset between the classical and quantum
rotationless band centers is then used to shift the classical vibrational-rotational band contour
into its quantum corrected position.

While this procedure can be quickly carried out, there is also a rougher approximation
which can be used. Classical oscillation is often so close to the bottom of the potential well that
a classical vibration sees essentially only the harmonic part of the potential and thus only the v.
term in Eq. (All) in the Appendix is important. Quantum mechanically, if hP, is high enough
with respect to k8 T, only v-0 will be appreciably populated, and only 1-0 vibrational transi-
tions need be considered. Then the offset in angular frequency w is approximately -47rvx,, as
may be computed from Eq. (A 11).

iii) Rotational lineshape. Comparing Eqs. (27) and (29), and noting Eq. (1I), we can
quantum correct the rotational absorption lineshape function 4.(o) for the vibrational-
rotational band by multiplying it by exp[f3-i(.Aow)/2,. in which %w is the frequency measured
from the rotationless center of the vibrational band. 19, 20 This factor can be understood b) con-
sidering rotation as a mechanically and statistically separate process from vibration in which
+Aow is a rotational absorption from .f-i and -Ao1 a rotational emission from f-i, and the fre-
quency difference 2A1e therefore separates processes for which detailed balance gives a probabil-
ity ratio of expl/3 (.11)] at equilibrium.

Thus, the classical fundamental vibration-rotation spectrum can be quantum corrected by
two easy steps. First, the spectrum is frequency shifted to take into account the effect of vibra-
tional anharmonicity, and second, it is multiplied by expli3'/T(AW)/2]. This assumes that vibra-
tion and rotation are approximately independent, so that detailed balance may be applied
separately to each. This assumption is not necessarily appropriate for condensed systems.

In Fig. 2 we show some of the effects of the various quantum corrections discussed above
for the fundamental vibration-rotation absorption band of gas phase CO. First of all, the upper
panel shows the quantum band contour from Eqs. (2), (5) and (A8-AI8) as a solid line. The
dotted line shows the classical band contour from the 7i-O limit of these equations. The
dashed line shows the effect of applying the vibrational anharmonic offset quantum correction
of -22 cm - ' at 300'K from Eq. (35) (the rougher approximation of -47'v,'xC gives2 l

-26 cm-1). The dashed and dotted line shows the effect of applying the rotational detailed bal-
ance correction exp[g3l(.1)/21 alone to the classical vibration-rotation band contour. The
effect p ,lying both the vibrational offset and the rotational detailed balance corrections is
shown .pen circles, and is seen to match very closely the true quantum contour.

The lower panel of Fig. 2 shows the large effect of vibrational anharmonicity on the band
contour. The computations are similar to those shown in the upper panel, except that CO is
treated as a harmonic oscillator. The same equilibrium internuclear distance and second deriva-
tive of the potential are used as for previous case, but the third, fourth, and higher derivatives
are set to zero. There is now no anharmonic offset. The solid line shows the quantum band
contour, the dotted line the classical contour, and the open circles the effect of applying the
rotational detailed balance correction. It should be noted for the real anharmonic CO band con-
tour that the difference in peak intensity of the P and R branches is much more pronounced
than for the harmonic case. The inability to match the P and R branch asymmetry of real spec-
tra with harmonic oscillator - rigid rotor models has been a source of confusion. It appears from
Fig. 2 that the problem has not been a quantum effect at all, but simply due to ignoring the
true anharmonicity of the potential.

-----------------------.
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!11. PURE ROTATIONAL SPECTRA
Fig. 3 shows the pure rotational band for gas phase CO. The upper panel shows the quan-

tum mechanical spectrum, computed as shown in the Appendix in Eqs. (A7) and (AI0-A18)
by explicitly calculating the individual transitions with the usual time-dependent perturbation
theory approach to compute /(w), and then using Eq. (2) to compute a(w). The solid line
shows the quantum band contour, given by broadening the individual transition lineshapes until
they merge, using Eq. (AIS). The CO potential used in all these calculations is HulTaker's
analytical expansion, 22,23 giving, for use in the quantum and correspondence principle classical
calculations, the potential derivative values at the equilibrium internuclear distance R,. of
V"(R)l.92024x0 - 3 J m- 2, V"'(R,.)=-I.36445x 10- 1'4 J m- 3 and V"(R,.)=8.08245x 10- 24

J m- 4. We used 21 R,.=l.128323x 10- I0 m and reduced mass m,--l.13843x10 -2 6 kg.
The middle panel of Fig. 3 demonstrates that the classical, correspondence principle, h-0

limit pure rotational band contour falls almost exactly on the quantum contour. The total area
of the rotational band is 1.88x10- 22m, close to the area of 1.94x10-22m indicated by the free
rigid rotor sum rule

o- d- -- 2i r A (36)
3x 10' 1'

given by Buontempo et aL24 Eq. (36) is given in SI units, a is the absorption cross section, k- I
the inverse wavelength, Io the permanent dipole moment and I the moment of inertia.

The lower panel of Fig. 3 demonstrates that "Newtonian" classical mechanics, calculated
from classical molecular dynamics as in Eq. (1), classical linear response theory as in Eqs. (4)
and (6) and classical statistical mechanical averaging also agrees with quantum reality. In addi-
tion, it is seen that the calculations essentially agree with the experimental gas phase measure-
ments of Buontempo et a124 on 1.6% CO solution broadened by Ar at 17.4 atm.

Thus, for the gas-phase CO rotational band contour, i) quantum, ii) correspondence prin-
ciple classical, iii) Newtonian classical and iv) experiment all agree.

IV. VIBRATIONAL-ROTATIONAL SPECTRA

Figure 4 shows the fundamental vibrational-rotational band for gas phase CO. The top
panel gives the results from quantum mechanics, the total effect of all the vibrational-rotational
transitions calculated from time-dependent perturbation theory as discussed in the Appendix.
The quantum vibrational-rotational lines in the P and R branches are computed explicitly from
the quantum transitions and then checked against accurate line position measurements. 25 The
quantum band contour is produced by widening out the lines as gaussians until they merge, as
calculated from Eq. (2) and Eqs. (A8-AI8) in the Appendix.

The middle panel of Fig. 4 shows that the correspondence principle classical result, as cal-
culated as the 1-0 limit of the above quantum transition result, agrees almost exactly with the
quantum result when the rotational and vibrational quantum corrections described above are
applied.

The lower panel of Fig. 4 shows the Newtonian classical result, computed from classical
molecular dynamics by Eq. (1), classical linear response theory, and classical ensemble averag-
ing, and then quantum corrected in the same way as in the middle panel. Newtonian classical
mechanics is seen also to agree very closely with the quantum result. In addition, as shown,
the experimental results of Armstrong and Welsh26 for CO broadened by 104 amagats of He
also agree in shape (no experimental absolute intensity was given).

Thus, four approaches all give essentially the same answer: i) quantum mechanics (time-
dependent perturbation theory), ii) quantum-corrected correspondence principle classical
mechanics as the P-0 limit of quantum mechanics, iii) quantum-corrected Newtonian classical
mechanics plus classical linear response theory and classical statistical mechanics and i.) experi-
mental measurement.
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In the above calculations, we used a linear averaged approximation to the dipole moment
function, Eq. (A3) in the Appendix, to facilitate a more parallel comparison among the various
theoretical approaches, choosing27-29 </->--O.lO9 8 Debyc for the averaged permanent
dipole moment and <IAI>-3.1 Debye/A for the dipole moment first derivative.
(1 Debye - 3.336x 10- 31) coulomb-meter.) The Newtonian approach may trivially be extended
to any dipole moment function and, at the cost of some algebraic complexity, the quantum and
f-0 classical approaches may also be extended.27 30-32 Additional quantum corrections to the
classical intensities may then be required. Given a dipole moment function, any of the theoret-
ical approaches can be used to compute the spectral intensities for rotational and vibrational-
rotational transitions more accurately than they are readily experimentally measur-
able.28 , 29, 33, 34

V. FROM GAS TO LIQUID
Having demonstrated that the quantum-corrected classical approach can provide essentially

correct spectral band contours for gas-phase rotational and vibrational-rotational transitions, the
cases in which we know accurately the potential energy and dipole moment functions and in
which we can compare to accurate quantum calculations, we now turn to higher densities,
where our knowledge of the potential energy and dipole functions is less certain, and our ability
to compute spectra by alternative means is less developed. We will treat solutions of CO in
progressively higher densities of Ar, and finally in liquid Ar.

Various approximation methods, 20 classical, semiclassical and quantum, have been applied
to computing vibrational-rotational band contours for diatomics in solution. Examples include
the stochastic and diffusional approach of Bratos and co-workers,17 . 3 . the semiclassical method
of Gordon and co-workers, 36-38 and the classical impact study of Koszykowski and Marcus.2t

Our choice to develop a classical (and rather brute-force) molecular dynamic method which
includes all degrees of freedom is inspired by our desire to extend the method to more complex
solute and solvent molecules and to transient spectra in non-equilibrium systems.

Figures 5 and 6 show experimental band spectra for room temperature CO in different
densities of Ar solvent after Coulon et a139 and in liquid Ar at a temperature of 97 K and a
density of 750 amagats (or 2.014x 1028 atoms m- 3) after Buontempo et aL24 (One amagat unit
of density is the actual concentration of the particular gas at 0C and I atm pressure, which
would be 2.6869x1025 molecules m- 3 for an ideal gas.) 40 For our theoretical spectra we use the
Newtonian classical approach developed above. To reduce edge effects in our dynamics we use
minimum image periodic boundary conditions, replicating a truncated octahedron in a space-
filling solid tessellation,i 0 smoothly reducing our potentials to zero within the radius of the
inscribed sphere to avoid discontinuities as atoms cross the boundaries.

The intermolecular potential we use is a simple pairwise Lennard-Jones approximation,

VW - 4E I(o./r) 12 - (o'/r)61, (37)

in which r is the pairwise internuclear distance. For Ar - Ar we use20 a well-depth E-124lK kl
(equivalent to 1.712xl0-21 j) and a zero-crossing radius (r-0.342 nm. For both Ar - C and Ar
- 0 we use e-88K k8 (equivalent to 1.22xI0-2 1 I) and (r-0.328 nm. This Ar - CO potential
is a crude fit of two identical two body potentials to the potential surface of Parker and Pack-1

by roughly matching two body potentials to the zero-crossing and well depths for the average of
both three body potentials shown in their Fig. 4. The CO intramolecular potential is as before.

In these calculations of CO in Ar, to reduce the computational effort per specific spectrum
and allow more ensemble averaging, we use in the molecular dynamics a step size of 10- 1 s,
and then correct the spectra for the +16 cm-1 shift this produces. Fifty-five atoms of Ar are
used in the unit cell. As can be seen in Figs. 5 and 6, the agreement of theory and experiment
all the way from the dilute gas phase to the liquid phase is quite satisfactory, given the crude-
ness of the potential we have used, and the experimental uncertainties.
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VI. CONCLUSION
This work shows, at least for the simple system treated, that the combination of classical

molecular dynamics, linear response theory, classical ensemble averaging and suitable quantum
corrections allows electric dipole rotational and vibrational-rotational band contours to be com-
puted which are in close agreement with quantum calculations and with experimental results.
As we have shown, the approach is equally applicable over the range of densities from dilute
gas to liquid solution (and it should also apply to solids). We have purposely avoided, at least
for now, the additional theoretical complexity42 inherent in treating the case of strong absorbers
in more concentrated solutions, due to the variation of the index of refraction with absorption
frequency.

The reason that these classical calculations reproduce so well the observed spectra can be
understood as follows. For translational motion, the quantum numbers for the usual effective
volumes for atomic motion are large enough that the correspondence principle implies quantum
convergence to the classical limit. For rotational motion, the average quantum numbers are
moderate, and if one blurs the rotational lines, for example by collisions, the band contours
require at most quite small quantum corrections. For vibrational motion, the average quantum
numbers are very small, and the correspondence principle limit is far from fulfilled. Thus, at
first glance, one is surprised that the classical and quantum agreement is so good. The reason
for this agreement is the unique equivalence for quadratic potentials of many averaged measur-
ables for the classical and quantum cases.434 6 For example, the average energy gain for the
forced harmonic oscillator driven by a time varying force F() either from radiation or from
collisions is the same classically and quantally, and the quantum expectation values and classical
values of position and momentum follow the same classical equations of motion. Thus we find
exact agreement between our classical and quantum spectral calculations for harmonic vibra-
tional motion driven by the time varying force from the oscillating electric field of the light,
and only the anharmonic part of the potential requires a quantum correction.

We are able to ignore the effects of quantization of the radiation field, in part, because the
lifetimes for spontaneous emission are long with respect to other changes in our system once
we have introduced collisions. Thus any broadening of our spectra by radiation damping is
negligible.

That classical mechanics succeeds so well in reproducing the absorption spectrum does not
imply that the system would behave classically if it were examined by a different set of meas-
urements. Clearly the vibrational properties are far from classical if one examines, for exam-
ple, the allowed energies of the system instead of the probability of light absorption versus
wavelength or frequency. What is implied is that we may think about (or compute) the whole
system of molecules and internal interactions as well as the interaction of the system with light
in a classical manner, applying our well-calibrated and insightful classical intuition, with some
confidence that we can arrive at close to the same spectral result as if we had properly handled
the real quantal nature of the system. This opens the way to understanding the vibrational
spectra of much larger and more complex systems under a wider variety of conditions than is
feasible with a quantum approach. We thus believe that the larger difficulties in the computa-
tion of vibrational spectral band contours, even for complex molecules and for condensed
phases, probably lie on the electronic side of the Born-Oppenheimer separation (potential
energy, dipole moment, and polarizability matrix as functions of nuclear position) rather than
on the nuclear motion side.

We plan in future papers to show how a parallel approach can be applied to the electric
dipole pure rotational and vibrational-rotational spectra of polyatomic molecules as well as to
Raman pure rotational and vibrational-rotational spectra, both for gases and condensed phases.
In addition, we plan to illustrate the extension of this molecular dynamic and linear response
approach to non-equilibrium, time dependent processes, specifically to the computation of tran-
sient rotational and vibrational-rotational spectra during the course of chemical change. We
believe that the computation and measurement of such spectra can be a promising route to dis-
covering the molecular dynamics of chemical reactions in solution.3
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APPENDIX: QUANTUM BAND CONTOURS
We will evaluate Eq. (5) quantum mechanically for a diatomic molecule,47 using rigid-

rotor harmonic oscillator transition probabilites, but energies (and thus frequencies and state
probabilities) which include anharmonic, centrifugal and vibrational-rotational coupling terms.
The transition matrix elements are

<flgLi> - <Yv:''M'ip(R)IvJM>. (AI)
in which v is the vibrational, J the total rotational angular momentum and M the z component
of angular momentum quantum number for a diatomic molecule with no spin or electronic
angular momentum. Primes indicate final state, and we assume integration of the dipole
moment operator over electronic coordinates to give (R), the dipole moment as a function of
internuclear distance R. By symmetry, /L(R) must lie along the internuclear axis, so that

p(R) - I(R), (A2)

in which R is a unit vector along the intermolecular axis. Our first approximation is to expand
p(R) as a Taylor's series, keeping only the first two terms,. which gives the standard linear
approximation to the dipole moment function

is(R) j=A + JIAR (A3)
in which AR - (R - Re) is the deviation from the position R,. at the minimum of the poten-
tial curve V(R).

Our second approximation is to evaluate the matrix element in Eq. (AI) using the rigid-
rotor harmonic oscillator approximation47

<4V'M'j(o + AjiAR)II vJM> == <v' (go + tAR)i v> <JM'IRIJM> (A4)

fIAo 8,,: + uI,-,.i(v+l)/2, '}<J'M')lJM> (AS)

in which 8 is the Kronecker delta and a - mnw ,/t1 (i, is the reduced mass). Since all M lev-
els have the same energy, we can sum over M in Eq. (5), finding48.49

I<J'M'iRiJM> 2 - (J+I)8j.-ij + j~j.+uj. (A6)
M--J

We can now insert Eqs. (AS) and (A6) into Eq. (5) and divide the spectrum into a pure rota-
tional absorption spectrum

[E(v.J+l) - E(v.J)_
IR (0))- p(v.J) i4J .'+1 8~ W~Jl ~J A)

v-O J-O

and a vibrational-rotational absorption spectrum, in which the R branch (J+l-J) is

"It()- p(vJ) js (J+l) [(v+)/2a 81E(v+ I J+ I) - E('J) - (AS)
v-0 J-0 I

and the P branch (J-I--J is
,- 6 p(,.J) ,4J ((+l)/2a1 4 E(v+lJ-l) - E(J)
"0 J- I-(
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where in Eqs. (A7-A9)

p(vJ) - exp(-0E(v.Y)1 (AIO)I 7(2J+0~exp[-#E(v.s]
V-0 J-O

The final approximation is to use energy levels evaluated to second order in perturbation
theory, involving the third and fourth derivatives of the potential, giving 47

E(v,) - hV,(V++) + Bj(j+1) - ,,X,(V+.L)l - a.(V+_)j(j+l) 5,Dj2(j+l)I (All1)

in which

B, - i (A12)

1, - m, R, (A 13)

" (270-1 1 V J - (A14)
--,BR,4 [I 0B,.RlI hJ, "(R,) 12 ;P..(e)(5

,- 4h 1  - V J(R) ( )

-2B,2 2B,.Re V'"(Re) ]Ce - h +3 (AI

and

,- 4J .(A17).5, 2

In the above, V"(Re), V"(R,) and V"'(R.) are the second, third and fourth derivatives of the
internuclear potential at the potential minimum.

All three of the above approximations (linearity of the dipole moment function, rigid
rotor - harmonic oscillator evaluation of the transition matrix-elements, and energy level
evaluation by second order perturbation theory through third and fourth derivatives of the
potential function) may be extended to higher terms to give higher accuracy, 33. So54 but in the
example treated here it is unwarranted.

Using these formulas, we can evaluate the quantum spectrum, and then obtain the band
contours by broadening the 8 functions, for example, into Gaussians

8(WjW) - (,/'r)'exp[y(/i-) 21 (A18)

and letting v decrease until the individual rotational peaks merge.

By evaluating Eqs. (A7-A9) at successively lower values of Planck's constant, until the
resulting functions converge to a limit, we can compute the correspondence principle classical
IC(o), and through applying the same technique to Eq. (2) we compute the correspondence
principle classical spectrum, a(Wo).
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Figure I. Absorption spectrum for gas phase CO at 298 XC, showing pure rotational band con-
tour on left and fundamental vibrational-rotational band contour on the right. Subsequent
figures examine each of these bands in detail.
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Figure 2. Quantum corrections to classical vibrational-rotational spectra. In the upper panel.
for the real anharmonic potential for CO, the solid line (under the open circles) shows the actu-
al quantum band contour for gas phase CO. The dotted line shows the correspondence limit
classical band. The dashed line shows the effect of applying the vibrational anharmonic offset
quantum correction alone to the classical band. The dashed and dotted line shows the effect of
applying the rotational detailed balance quantum correction alone. The open circles show the
effect of applying both corrections together. In the lower panel, similar contours are shown for
CO as a harmonic oscillator, keeping the same second derivative at the equilibrium internuclcar
distance as for the real CO potential. There is now no anharmonic offset quantum correction.
Note the large increase in the asymmetry between the maximum intensities of th, r" and R
branches produced by the anharnionicity in the potential.
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Figure 3. Pure rotational spectrum for gas phase CO at 129 K. The upper panel shows as a
dashed line the quantum rotational lines, (partially broadened by Eq. (Ai8) for illustration) and
as a solid line the quantum rotational band contour from further broadening the individual rota-
tional lines until they fuse into a smooth contour. The middle panel shows again the quantum
band contour as a solid line and the classical 7F-0 limit correspondence principle contour as
open circles which all very close to the quantum contour. The lower panel shows the quantum
contour as a solid line and the Newtonian classical (classical molecular dynamics, classical linear
response, classical statistical mechanical ensemble average) band as triangles. The Newtonian
Sp tra are an average over an ensemble of 10,000 single-molecule time histories of
24.6x 10-2s each with 10-I's integration steps, run in groups of 300 non-interacting molecules.
The dotted line is the experimental gas phase spectrum of Buontempo ,t a/, with Ar added to
partially broaden the rotational lines. We have multiplied their experimental cross sections by a
scaling factor of 1.15, which may well be within their experimental error, to better match both
our calculations and the sum rule of Eq. (36) which they cite, both of which are based on the
acepted values of the average permanent dipole moment of CO.
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Figure 4. Vibrational-rotational fundamental band spectrum for gas phase CO at 298%I. The
Upper panel shows as a dashed line the quantum vibrational-rotational lines (partially broadened
by Eq. (All!) for illustration), and as a solid line the quantum rotational band contour from
broadening the individual vibrational-rotational lines further until they fuse into a smooth con-
tour. The middle panel shows again the quantum band contour as a solid line and the quantum
corrected classical 1Ti-0 limit correspondence principle band as open circles which match very
closely the quantum contour. The lower panel shows the quantum contour as a solid line and
the quantum-corrected Newtonian classical (classical molecular dynamics, classical linear
response, classical statistical mechanical ensemble average) band as triangles. The Newtonian
spectra are averaged over an ensemble of 10,000 single-molecule time histories of 24.6x 10-12s
each with a WIN~ integration step, the dynamics run in groups of 300 non-interacting
molecules. The dotted line is the experimental gas phase spectrum of Armstrong and Welsh
with tie added to broaden the individual lines, which was giv'en with no absolute intensity un-
its, and is thus scaled to match the theoretical curves.
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The triangles show the theoretical spectra for solutions of CO in various densities of gas phase
Ar as computed from "Newtonian" theory (molecular dynamics, linear response, statistical
mechanics all carried out classically and then quantum corrected). Each spectrum is averaged
over an ensemble of 500 runs of 24.6x 10- 2 s in length, with a 10-1Ss step size using periodic
boundary conditions. The calculation of the dynamics for each run took 12 minutes of real
time. 55 Ar atoms and I CO are used, except for the 14 amagat computation which is 1400
runs with 17 Ar atoms. The doted line shows the corresponding experimental spectra from
Coulon et al for gas-phase solutions of cO in Ar at room temperature. All the experimental
cross-sections are scaled by a factor of 0.82, which is perhaps within their experimental uncer-
tainty, and is certainly within the range of other historical experimental intensity measurements
for the CO fundamental intensity, in order to more closely match the theoretical calculations,
which are based on more recent dipole derivative measurements. In all cases, the ildcx of re-
fraction, n, in the linear response equations is set to 1.0.
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Figure 6. CO in liquid Ar plotted to the same scale as Fig. 5. Open triangles are the "Newtoni-
an" theoretical calculations, for 55 Ar atoms and one CO using periodic boundary conditions.
The spectra are averaged over 500 runs of 24.6x10-12s each with a l0-15s step size at 97"K.
The dotted line shows the liquid phase experimental measurement of Buontempo et al which is
given with no absolute units, and is thus scaled to match the theoretical calculations. It is ap-
proximately corrected for the indicated instrumental resolution. The anharmonic shift comput-
ed from Eq. (35) is -25 cm- ' at 97 K, which is not quite sufficient to match the experimental
liquid phase data, so we have added an additional -5 cm- solvent shift (approximately a fre-
quency scale factor of 0.998) to our computed data to match the experimental measurement.
The index of refraction, it, in the linear responsc equations is set to 1.0.
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